Multiplicity of solutions for a superlinear p-Laplacian equation
نویسندگان
چکیده
We consider quasi-linear elliptic equations involving the p-Laplacian with nonlinearities which interfere asymptotically with the spectrum of the differential operator. We show that such equations have for certain forcing terms at least two solutions. Such equations are of so-called Ambrosetti-Prodi type. In particular, our theorem is a partial generalization of corresponding results for the semi-linear case by Ruf-Srikanth (1986) and de Figueiredo (1988).
منابع مشابه
0 N ov 2 01 5 Bifurcation and one - sign solutions of the p - Laplacian involving a nonlinearity with zeros ∗
In this paper, we use bifurcation method to investigate the existence and multiplicity of one-sign solutions of the p-Laplacian involving a linear/superlinear nonlinearity with zeros. To do this, we first establish a bifurcation theorem from infinity for nonlinear operator equation with homogeneous operator. To deal with the superlinear case, we establish several topological results involving s...
متن کاملThe fibering map approach to a quasilinear degenerate p(x)-Laplacian equation
By considering a degenerate $p(x)-$Laplacian equation, a generalized compact embedding in weighted variable exponent Sobolev space is presented. Multiplicity of positive solutions are discussed by applying fibering map approach for the corresponding Nehari manifold.
متن کاملExact multiplicity of positive solutions for a p-Laplacian equation with positive convex nonlinearity
A p-Laplacian nonlinear elliptic equation with positive and p-superlinear nonlinearity and Dirichlet boundary condition is considered. We first prove the existence of two positive solutions when the spatial domain is symmetric or strictly convex by using a priori estimates and topological degree theory. For the ball domain in RN with N ≥ 4 and the case that 1 < p < 2, we prove that the equation...
متن کاملExistence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition
We study the nonlinear elliptic boundary value problem Au = f(x, u) in Ω , Bu = g(x, u) on ∂Ω , where A is an operator of p−Laplacian type, Ω is an unbounded domain in R with non-compact boundary, and f and g are subcritical nonlinearities. We show existence of a nontrivial nonnegative weak solution when both f and g are superlinear. Also we show existence of at least two nonnegative solutions ...
متن کاملMultiplicity of solutions for p-Laplacian equation in R with indefinite weight
In this article, we study the existence of infinitely many nontrivial solutions for a class of superlinear p-Laplacian equations −∆pu+ V (x)|u| p−2 u = f(x, u), where the primitive of the nonlinearity f is of subcritical growth near ∞ in u and the weight function V is allowed to be sign-changing. Our results extend the recent results of Zhang and Xu [Q. Y. Zhang, B. Xu, Multiplicity of solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008